分享:本鋼7號(hào)高爐爐況強(qiáng)化實(shí)踐
本鋼7號(hào)高爐(2850 m3)于2020–02–23 3#熱風(fēng)爐大修投用后,風(fēng)溫由990上升至1130 °C,產(chǎn)量6550 t/d,燃料比560 kg/t,初期高爐經(jīng)濟(jì)技術(shù)指標(biāo)未達(dá)到正常水平,經(jīng)過(guò)一個(gè)月的強(qiáng)化后,壓量關(guān)系逐步改善,產(chǎn)量提升至6850 t/d以上,焦比下降至370 kg/t,燃料比下降至525 kg/t,達(dá)到了預(yù)期目標(biāo),在提產(chǎn)降耗方面取得良好的效果。
1. 高爐參數(shù)
本鋼7號(hào)高爐采用中心加焦的布料模式,焦礦同角度,布料矩陣(C為焦炭,P為礦石,上標(biāo)為布料角度,下標(biāo)為布料圈數(shù))為
,主要經(jīng)濟(jì)指標(biāo)見(jiàn)表1。經(jīng)研究分析,當(dāng)前爐況的主要問(wèn)題是中心焦量偏多,邊緣過(guò)重,導(dǎo)致煤氣利用率偏低,礦石在爐內(nèi)下降的過(guò)程中得不到充分的預(yù)熱和還原,不得不經(jīng)軟熔帶后通過(guò)直接還原生成液態(tài)生鐵,而直接還原是強(qiáng)吸熱過(guò)程,因此相對(duì)低溫的渣鐵進(jìn)入爐缸,造成爐缸物理熱較差,活躍度降低,壓量關(guān)系緊張[1−2]。此時(shí)在焦炭負(fù)荷一定的情況下,需增大噴煤量來(lái)補(bǔ)充熱源,但是將造成燃料比上升,同時(shí)大量噴煤導(dǎo)致料柱內(nèi)未燃煤粉激增,孔隙度下降,壓量關(guān)系再次上升,形成惡性循環(huán)。因此通過(guò)優(yōu)化布料矩陣,來(lái)減輕邊緣焦炭負(fù)荷,從而提高煤氣利用率,改善礦石的預(yù)熱還原是解決燃耗和產(chǎn)量問(wèn)題的關(guān)鍵所在。
2. 調(diào)整步驟
由于5月份高爐原燃料條件相對(duì)穩(wěn)定,高爐操作人員以此為契機(jī)開(kāi)始爐況的強(qiáng)化操作。為保證爐況的穩(wěn)定順行,本次調(diào)整的操作方針可概括為“退負(fù)荷抬爐溫降壓差,收角度加環(huán)數(shù)開(kāi)邊緣,減中心提利用率增產(chǎn)量,增負(fù)荷提富氧達(dá)目標(biāo)”。
2.1 退負(fù)荷抬爐溫降壓差
因爐況調(diào)整前高爐壓量關(guān)系比較緊張,鐵水w(Si)=0.30%~0.35%,為防止調(diào)整過(guò)程中出現(xiàn)氣流變化、渣皮脫落等引起的爐溫波動(dòng),及降低高爐操作壓差,為高爐調(diào)整提供操作空間,首先對(duì)焦炭負(fù)荷進(jìn)行調(diào)整,見(jiàn)表2。5月11日配料焦比由386提高到418 kg/t后,風(fēng)量加至4750~4800 m3/min,煤氣利用率由42.5%降至40.0%,壓差165 kPa左右,爐溫水平w(Si)=0.6%,具備進(jìn)行下一步操作的條件。
當(dāng)爐溫和壓差達(dá)到合理范圍內(nèi)后,結(jié)合高爐操作參數(shù)和分析結(jié)果,通過(guò)收角度和增加邊緣焦炭環(huán)數(shù)來(lái)減輕邊緣焦炭負(fù)荷,從而改善礦石的預(yù)熱和還原,從根源上解決燃料比和壓量關(guān)系偏高的問(wèn)題。
(1)收角度。
本鋼7號(hào)高爐爐況調(diào)整前礦角差8.6°,布料最外檔41.1°,為防止布料距爐墻太近影響布料效果,在礦角差不變的情況下,最外檔角度分兩步由41.1°收縮到40.5°,之后由40.5°收縮到40.0°。較小的布料角度在爐料的沖擊和滾動(dòng)效應(yīng)下更容易發(fā)展邊緣。
(2)加環(huán)數(shù)。
此次調(diào)整是本次爐況強(qiáng)化的重中之重,是解決礦石預(yù)熱還原問(wèn)題的關(guān)鍵所在。在收角度的同時(shí),最外檔和次外檔布焦環(huán)數(shù)由2圈增為3圈,同時(shí)為保證中心焦比例的穩(wěn)定,中心焦環(huán)數(shù)由5.3圈改為5.8圈,即
本次調(diào)整后高爐參數(shù)穩(wěn)定,壁體溫度無(wú)明顯變化,無(wú)渣皮脫落,水溫差由1.7上升至2.2 °C后趨于穩(wěn)定,煤氣利用率由輕負(fù)荷后的40.0%上升至41.5%,無(wú)減風(fēng)現(xiàn)象,在輕負(fù)荷的保障下,煤氣流的改變并未給壓量關(guān)系帶來(lái)明顯沖擊,且爐溫水平穩(wěn)定在w(Si)=0.5%~0.6%水平,平穩(wěn)過(guò)渡到理想的調(diào)整狀態(tài)。
通過(guò)對(duì)壁體溫度、爐體水溫差、壓量關(guān)系等數(shù)據(jù)的觀察,操作參數(shù)變化趨勢(shì)平穩(wěn)后,進(jìn)行減中心焦調(diào)整。此次調(diào)整是通過(guò)減少中心焦量來(lái)縮小中心煤氣通路,從而驅(qū)使部分氣流由中心轉(zhuǎn)移至環(huán)帶和邊緣,使其在塊狀帶與下降的礦石進(jìn)行熱交換,參與礦石的預(yù)熱還原,充分利用煤氣的熱能和化學(xué)能,高爐參數(shù)的主要表現(xiàn)為爐頂打水的逐漸減少和煤氣利用率的穩(wěn)步提升。
開(kāi)邊緣操作24 h后參數(shù)趨于穩(wěn)定,5月12日本次調(diào)整措施為中心焦由5.8圈減為5.3圈,即
5月13日9:00繼續(xù)將中心焦由5.3圈減為4.8圈,即
經(jīng)過(guò)前3步的調(diào)整,爐況順行程度較好,壓量關(guān)系寬松,爐型規(guī)整,在原燃料條件發(fā)生波動(dòng)時(shí),爐況適應(yīng)能力較強(qiáng),因此在接下來(lái)的一周時(shí)間內(nèi),主要是根據(jù)實(shí)際爐況進(jìn)行增負(fù)荷和提富氧操作,力爭(zhēng)達(dá)到高產(chǎn)低耗的目標(biāo),具體操作步驟見(jiàn)表3。
在逐步加料和提富氧的過(guò)程中,由于中心氣流和邊緣氣流的分配合理,風(fēng)壓參數(shù)平穩(wěn),煤氣利用率逐步上升至46.5%水平,燃料比下降至525 kg/t,達(dá)到了預(yù)期目標(biāo)。
高爐操作爐型控制應(yīng)當(dāng)以“兩道氣流”為主線(xiàn),尤其是在原燃料條件不穩(wěn)定的情況下,必須保障中心氣流通暢,邊緣氣流穩(wěn)定[3-4]。通暢的中心氣流可以保證高爐順行,有良好的原燃料適應(yīng)性;穩(wěn)定的邊緣氣流可以增加礦石與煤氣的熱交換率,提高煤氣利用率,降低燃耗;同時(shí)邊緣氣流可以與中心氣流形成互補(bǔ),在中心氣流受到抑制時(shí),邊緣氣流自動(dòng)增強(qiáng),保持壓量關(guān)系穩(wěn)定。本次爐況調(diào)整以此為指導(dǎo)思想,以冷卻壁水溫差間接代表邊緣氣流變化,結(jié)合實(shí)時(shí)的煤氣分析數(shù)值作圖,如圖1。
由圖可以看出,在爐缸冷卻水量3600 m3/h,爐身冷卻水量3000 m3/min不變的情況下,第一步輕負(fù)荷,煤氣利用率由初始的42.5%降至40.0%,但由于爐溫的提升,爐體水溫差并無(wú)太大變化,維持1.7 °C左右;第二步開(kāi)邊緣,主要是對(duì)中心和邊緣氣流的重新分配,調(diào)整后邊緣氣流明顯增加,表現(xiàn)為水溫差由1.7上升到2.2 °C,同時(shí)煤氣利用率也小幅上升至41.5%水平;第三步減中心,是對(duì)中心和邊緣氣流的再次微調(diào),通過(guò)減少中心焦量促使部分中心氣流過(guò)渡至邊緣,表現(xiàn)為水溫差由2.2上升至3.0 °C,同時(shí)由于負(fù)荷較輕,煤氣利用率增幅不大,僅為42%左右;第四步增產(chǎn)量,是在上述調(diào)整后,爐型規(guī)整,參數(shù)平穩(wěn)的基礎(chǔ)上,通過(guò)逐步增加負(fù)荷將煤氣利用率提高至46.5%,通過(guò)增加富氧提產(chǎn)至6850 t/d,從而實(shí)現(xiàn)提產(chǎn)降耗的總目標(biāo)。
(1)合理的中心和邊緣兩道氣流是操作爐型的控制標(biāo)準(zhǔn),具有很好的外圍條件適應(yīng)性,通暢的中心氣流和穩(wěn)定的邊緣氣流能夠?qū)崿F(xiàn)優(yōu)勢(shì)互補(bǔ),是高爐實(shí)現(xiàn)高產(chǎn)低耗的重要途徑。
(2)爐體水溫差可間接代表邊緣氣流的發(fā)展情況,但需結(jié)合壁體溫度、頂溫情況等綜合判斷,確保爐況調(diào)整準(zhǔn)確合理。
(3)焦炭負(fù)荷是調(diào)節(jié)爐況最有效的手段之一,在調(diào)整初期通過(guò)減輕焦炭負(fù)荷能夠有效的緩解壓量關(guān)系,抬高爐溫水平,調(diào)整后期增加焦炭負(fù)荷可以快速提高煤氣利用率,降低燃料消耗水平。
參考文獻(xiàn)
[1]周傳典. 高爐煉鐵生產(chǎn)技術(shù)手冊(cè). 北京: 冶金工業(yè)出版社, 2008: 443
[2]杜楠. 高爐爐況預(yù)測(cè)和煤氣流分布關(guān)系建模方法研究[學(xué)位論文]. 長(zhǎng)沙: 中南大學(xué), 2014
[3]齊萬(wàn)兵,王善增. 韶鋼7號(hào)高爐爐役后期強(qiáng)化冶煉的措施. 煉鐵,2018,37(3):50
[4]謝孔明,高維平. 高爐爐缸高效運(yùn)行的改進(jìn)措施. 金屬世界,2022(4):95
文章來(lái)源——金屬世界
2.2 收角度加環(huán)數(shù)開(kāi)邊緣
2.3 減中心提利用增產(chǎn)量
2.4 增負(fù)荷提富氧達(dá)目標(biāo)
3. 操作分析
4. 結(jié)束語(yǔ)
“推薦閱讀”
【責(zé)任編輯】:國(guó)檢檢測(cè)版權(quán)所有:轉(zhuǎn)載請(qǐng)注明出處