摘 要:對汽車發(fā)動機用AM50合金進行了Er合金化處理;采用掃描電鏡(SEM),X射線衍射儀(XRD),浸泡試驗
和電化學試驗研究了Er含量對AM50合金組織和耐蝕性的影響。結(jié)果表明:Er微合金化的AM50合金中除了含有αMg相和βMg17Al12相外,還形成了Al7ErMn5 相和Al3Er相;隨著Er含量的增加,合金的腐蝕速率總體表現(xiàn)為先降低而后升高的趨勢,腐蝕后抗拉強度呈現(xiàn)先增加而后降低的趨勢,而強度損失呈現(xiàn)先減小而后增大的趨勢;Er添加量為0.5%(質(zhì)量分數(shù))時,AM50合金具有最佳耐蝕性和拉伸性能。
關(guān)鍵詞:汽車發(fā)動機;AM50合金;Er微合金化;腐蝕速率;抗拉強度
中圖分類號:TG174 文獻標志碼:A 文章編號:1005748X(2017)06044105
Effects of Er Content on Microstructure and Corrosion Resistance of AM50 Alloy for Automotive Engine
WENAiming,XIEJian,LIU Yiguan,HUJun
(NanjingCommunicationsInstituteofTechnology,Nanjing211188,China)
Abstract::AM50alloyforautomobileenginewasmicroalloyedbyadditionofEr.TheeffectsofErcontenton
microstructureandcorrosionresistanceofAM50alloywerestudiedthroughscanningelectronmicroscopy(SEM),X
raydiffraction(XRD),immersiontestandelectrochemicaltest.TheresultsshowthattheErmicroalloyedAM50
alloycontainedphasesofαMg,βMg17Al12,Al7ErMn5andAl3Er.WiththeincreaseofErcontent,thecorrosion
rateofthealloyfirstdecreasedandthenincreasedingeneral,butthetensilestrengthincreasedfirstandthen
decreased,andthestrengthlossdisplayedthesametendencywiththecorrosionrate.TheAM50alloyhadthebest
corrosionresistanceandtensilepropertieswhentheadditionofErwas0.5% (mass).
Key Words:automobileengine;AM50alloy;Ermicroalloying;corrosionrate;tensilestrength
鎂合金是以鎂為基體加入其他金屬元素組成的合金,具有密度小、比強度高、比彈性模量大、散熱好、消震性好等優(yōu)點,被廣泛應(yīng)用于汽車、交通等領(lǐng)
域[1]。汽車行駛時,60%燃料的消耗于汽車自重,汽車自重每減輕10%,其燃油效率可提高5%以上,而鎂合金作為最輕的結(jié)構(gòu)金屬材料之一,在殼體類和支架類汽車零部件領(lǐng)域有著較為明顯的優(yōu)勢。然而,鎂合金的耐蝕性較差,不能滿足服役條件對材料的要求,因此提高鎂合金的耐蝕性有利于其推廣應(yīng)用。常用的改善鎂合金耐腐蝕的方法主要包括微合金化和熱處理等[2]。其中,微合金化元素主要有Al、Zn、Mn、Ce以及少量Zr或Cr等。近年來,稀土元素Er在有色合金中的應(yīng)用得到科研工作者的關(guān)注。研究表明,在鎂合金中添加 Er可以一定程度提高合金的常溫和高溫力學性能[34]。然而,關(guān)于Er元素對鎂合金耐蝕性影響方面的報道還較少。
本工作通過在發(fā)動機用 AM50合金中添加Er進行微合金化,研究了 Er含量對 AM50合金組織與耐蝕性的影響。
1 試驗
試 驗 原 料 為 高 純 Mg (99.99%)、高 純Al(99.99%)、Al10Mn中間合金、ErMg中間合金等。在真空感應(yīng)熔煉爐中對 AM50合金進行了熔
煉,并通過添加 Er?qū)ζ溥M行微合金化。熔煉過程中采用氬氣進行保護以防止鎂合金的燃燒和氧化,澆注溫度控制在710℃,通過添加中間合金和高純
Al來調(diào)節(jié)合金成分,共制備了六種不同 Er含量的AM50合金,其化學成分及相應(yīng)編號見表1。
表1 試驗合金的化學成分(質(zhì)量分數(shù))
Tab.1 Chemicalcompositionofexperimentalalloy(mass)
采用D8AdvanceX射線衍射儀(XRD)對鑄態(tài)、合金的物相進行了分析。采用JSM6800型掃描電鏡(SEM)對合金表面形貌進行了觀察,并采用附帶的能譜分析儀(EDS)對微區(qū)成分進行了測定。
電化學極化曲線測試在 ZenniumE型電化學工作站中進行,試樣為10mm×10mm×10mm 的塊狀,測試溶液為3.5% NaCl(質(zhì)量分數(shù),下同)溶液,掃描速率為10mV/s[5]。
腐蝕 浸 泡 試 樣 尺 寸 為 10 mm×10 mm×10mm,試樣經(jīng)打磨和拋光處理后,用丙酮和酒精清洗并吹干備用。腐蝕介質(zhì)為3.5% NaCl溶液,浸泡時間分別為24,72,168h。采用失重法計算腐蝕速率。
拉伸試樣分別為腐蝕前后的試樣。采用硝酸銀溶液去除腐蝕后試樣表面腐蝕產(chǎn)物,并用清水和酒精沖洗后吹干。拉伸試驗在 MTS810型液壓伺服電子萬能拉伸機上進行,拉伸速率為1mm/min。
圖1 鑄態(tài) AM50Er0合金的XRD譜和SEM 圖
Fig.1 XRDpattern(a)andSEMimage(b)
ofcastAM50Er0alloy
2 結(jié)果與討論
2.1 顯微組織和相組成
對AM50Er0合金鑄錠進行物相分析和顯微組織觀察,結(jié)果如圖1 所示。由圖1(a)可見,鑄態(tài)AM50Er0 合金主要由αMg 固溶體和初生βMg17Al12相組成,XRD 譜中部分αMg相衍射峰和βMg17Al12相衍射峰重合;由圖1(b)可見,在AM50Er0合金中存在較多的白色顆粒狀析出相以及少量的白色針狀析出相。能譜分析(圖略)結(jié)果表明,白色顆粒狀析出相主要含有 Al和 Mg元素,而白色針狀析出相主要含有 Al和 Mn元素,黑灰色區(qū)域則主要含有 Mg元素。結(jié)合XRD譜和文獻[6]可知,黑灰色區(qū)域為αMg固溶體,白色顆粒狀的物質(zhì)為βMg17Al12相,而針狀白色物質(zhì)為 Al8Mn5 相。由圖2可見:經(jīng)Er微合金化后,AM50合金中除 了 含 有 αMg 相 和 βMg17 Al12 相 外,還 有Al7ErMn5 相和 Al3Er相;不同Er含量的 AM50合金中的物相種類相同,但隨著 AM50合金中 Er含量的增加,Al3Er相的含量逐漸增加,而βMg17Al12相的含量逐漸減少。這主要是由于隨著 Er含量的增加,AM50合金中初生的 Al3Er相的含量有所增加,這種初生相的形成優(yōu)先于βMg17Al12相[7],且消耗了合金中的 Al原子,使 AM50合金中 Al含量減少,因此βMg17Al12相的含量會有所降低。
圖2 不同Er含量的AM50合金的XRD譜
Fig.2?。兀遥模穑幔簦簦澹颍睿螅铮妫粒停担埃幔欤欤铮螅鳎椋簦瑁洌椋妫妫澹颍澹睿簦牛颍悖铮睿簦澹?/b>
由圖3可見:AM50Er0合金中除了αMg相和βMg17Al12相外,有少量針狀AlMn相存在,其中βMg17Al12相主要分布在晶界;在合金中添加稀土元素Er后,AM50 合金中開始出現(xiàn)了更加白亮的Al7ErMn5 相和 Al3Er相,合金的組織有一定細化。
AM50Er1合金中,Al7ErMn5 相和 Al3Er相的含量相對較少,尺寸較為細??;隨著合金中 Er含量的增加,合金中 Al7ErMn5 相和 Al3Er相的數(shù)量和含量有所增加。對合金中白亮色的物相進行能譜分析(圖略),結(jié)果表明,這些亮白色區(qū)域主要含有 Mg、Al、Mn和Er元素,且 Mn元素和Er元素經(jīng)常是伴生出現(xiàn),這主要取決于合金凝固過程中的熱力學條件。在合金凝固過程中,Er元素會在αMg的界面前沿聚集并造成成分過冷,枝晶間距不斷減小和細化;此外,Er元素還對βMg17Al12相的粗化和長大起到一定的抑制作用。
2.2 極化曲線
由圖4(a)可見:在 Er微合金化 AM50合金的極化曲線上,隨著Er含量的增加,合金的自腐蝕電位呈 現(xiàn) 先 正 向 移 動 而 后 負 向 移 動 的 趨 勢,AM50Er4合金的自腐蝕電位的最大,為-1.49V;相應(yīng)地,自腐蝕電流密度也呈現(xiàn)先減小而后增大,AM50Er4合金的自腐蝕電流密度最小。由圖4(b)可見:對比 AM50Er0和 AM50Er4合金的 Tafel區(qū)域,前 者 的 自 腐 蝕 電 位 (-1.52 V)比 后 者 的(-1.49V)更負,且陰極電流密度和陽極電流密度也相對更低。這說明在 AM50合金中添加 Er元素,能使合金的耐蝕性得到提高。這是因為:Er元素的加入可以增加表面腐蝕膜層的致密性,在腐蝕過程中抑制腐蝕溶液對基體組織的侵蝕;此外,Er元素的加入可以使陰極處βMg17Al12相的含量降低,減少腐蝕過程中腐蝕電偶的數(shù)量[8]。但是,合金中Er元素含量過多,會導致含Er金屬間化合物的數(shù)量增加和尺寸變大,屬間化合物與βMg17Al12相形成微電偶的數(shù)量也會增加,從而使析氫反應(yīng)的加速,陰極反應(yīng)的腐蝕電流密度增大,合金的耐蝕性反而會降低。
圖3 不同Er含量 AM50合金的SEM 圖
Fig.3 SEMimagesofAM50alloyswithdifferentErcontent
2.3 腐蝕速率
由圖5可見:當腐蝕時間相同時,隨著Er含量的增加,AM50合金的腐蝕速率總體表現(xiàn)為先降低而后升高的趨勢;AM50Er2和 AM50Er3合金的腐蝕速 率 相 差 不 大,但 都 小 于 AM50Er1 合 金 的,AM50Er4合金的腐蝕速率僅次于 AM50Er1合金的。腐蝕浸泡試驗結(jié)果與電化學測試結(jié)果存在一定的差異,因為在清洗過程中 AM50Er4和 AM50Er5合金中部分尺寸較大的 Al7ErMn5 相和 Al3Er相出現(xiàn)了脫落,使得腐蝕浸泡試驗數(shù)據(jù)存在一定誤差。由圖6可見:隨著腐蝕時間的延長,AM50Er0合金和 AM50Er4合金的腐蝕速率呈先降低而后逐漸趨于平穩(wěn)的特征,AM50Er4合金的腐蝕速率明顯低于 AM50Er0合金的,二者在相同的腐蝕時間內(nèi)腐蝕速率相差4倍左右。由此可見,Er元素的添加極大地提高了 AM50合金的耐蝕性。
由圖7可見:經(jīng)過72h浸泡腐蝕后,AM50Er0合金表面出現(xiàn)了較多的連續(xù)腐蝕坑;當在 AM50合金中添加Er元素后,合金表面的腐蝕坑數(shù)量明顯減少,且 AM50Er2合金表面的腐蝕坑的面積最小。
AM50合金中添加Er元素可以細化合金組織,降低合金中βMg17Al12相的數(shù)量,從而抑制了由于電位不同而產(chǎn)生的微電偶腐蝕反應(yīng)[8];此外,Er元素的添加還在一定程度上改善了腐蝕膜層的結(jié)構(gòu)起到了抑制腐蝕坑形成的作用。但是并不是 Er添加量越多越好,如果合金中含 Er金屬間化合物的數(shù)量和體積增加至一定程度時,這種化合物會成為新的陰極而發(fā)生原電池反應(yīng),導致腐蝕速率的增大,合金的耐蝕性反而降低。
2.4 拉伸性能
由圖8(a)可見,在同樣的腐蝕時間下,隨著AM50合金中Er含量的增加,合金的抗拉強度呈先增加而后降低的趨勢,在 Er質(zhì)量分數(shù)為0.5%時,合金的抗拉強度最大。強度損失為合金腐蝕前后抗拉強度的差值。從圖8(b)可見,隨著 AM50合金中Er含量的增加,強度損失呈現(xiàn)先減小而后增大的趨勢,Er質(zhì)量分數(shù)為0.5%時,合金的強度損失最小。
Er元素在 AM50合金中可以起到細晶強化、固溶強化和第二相強化的作用[9],因此合金的常溫拉伸性能會有所增強。此外,Er元素在腐蝕過程中會以氧化物形式進入到表面腐蝕膜層中,并在凝固過程中抑制βMg17Al12相的形成,從而減少局部微電偶反應(yīng)發(fā)生,從整體上降低了合金發(fā)生腐蝕反應(yīng)的可能性,改善了合金的耐蝕性。由此可見,Er質(zhì)量分數(shù)為0.5%時,AM50合金具有最佳的拉伸性能和耐蝕性。
(d) AM50Er3 (e) AM50Er4 (f) AM50Er5
圖7 不同Er含量的 AM50合金在3.5% NaCl溶液中浸泡72h后的腐蝕形貌
Fig.7 CorrosionmorphologyofAM50alloyswithdifferentErcontentimmersedin3.5% NaClsolutionfor72h
Fig.8 Tensilestrength(a)andstrengthloss(b)ofAM50alloyswithdifferentErcontentaftercorrosion
3 結(jié)論
(1)未添加Er的鑄態(tài)AM50合金主要由αMg固溶體和初生βMg17Al12相組成;經(jīng)過Er微合金化后,AM50合金中除了αMg相和βMg17Al12相外,還含有 Al7ErMn5 相和 Al3Er相。
(2)當腐蝕時間相同時,隨著 Er含量的增加,AM50合金的腐蝕速率總體表現(xiàn)為先降低而后升高的趨勢。AM50Er2和 AM50Er3合金的腐蝕速率相差不大,但都小于 AM50Er1合金的,AM50Er4合金的腐蝕速率僅次于 AM50Er1合金的。
(3)隨著AM50合金中Er元素含量的增加,腐蝕后合金的抗拉強度呈現(xiàn)先增加而后降低的趨勢,在Er質(zhì)量分數(shù)為0.5%時拉強度最大;強度損失隨Er元素含量的增加呈現(xiàn)先減小而后增大的趨勢。
(4)Er質(zhì)量分數(shù)為0.5%時,AM50合金具有最佳的拉伸性能和耐蝕性。
(文章來源:材料與測試網(wǎng))