焊縫探傷是一種常見的不銹鋼焊管焊接質(zhì)量檢測方法[1-3],其中的渦流檢測具有檢測精度高、檢測速率快、易于自動檢測等優(yōu)點。趙番等[4]設(shè)計了一套渦流檢測系統(tǒng),解決了金屬管道內(nèi)、外壁缺陷的區(qū)分難題。劉夢龍[5]以304不銹鋼焊管為研究對象,采用渦流檢測技術(shù)實現(xiàn)對不銹鋼焊管焊縫位置的準確識別。
工業(yè)不銹鋼焊管的渦流檢測信號本質(zhì)上是時間序列數(shù)據(jù),早期的渦流檢測是以阻抗分析法為基礎(chǔ),僅對檢測缺陷或原始信號中的二次信息進行篩選,構(gòu)建各種缺陷信號的特征向量,并進行區(qū)分[6-9]。但利用該方法處理信號易造成原始信號的部分丟失與失真。不銹鋼焊管具有復(fù)雜的結(jié)構(gòu),其原始信號中包含了大量的關(guān)鍵信息,如材料的物理特性、焊縫的質(zhì)量等。這些信號在處理過程中受損會影響缺陷檢測與定性分析結(jié)果的準確性。因此,在對不銹鋼焊管進行質(zhì)量評估時,往往會出現(xiàn)誤判或遺漏的情況。通過訓練深度神經(jīng)網(wǎng)絡(luò),可以從大量的數(shù)據(jù)中自動提取有用特征,而不需要人工干預(yù)。這種方法不僅可以有效避免信號處理過程中產(chǎn)生的失真現(xiàn)象,還可以大幅提高缺陷檢測的準確率[10]。MIAO等[11]利用圖像卷積增強邊緣特征,提取焊縫邊緣信息,可以較準確地識別焊縫缺陷。王澤[12]提出了卷積神經(jīng)網(wǎng)絡(luò)的圖像超分辨率重建算法,以獲取不同尺度的特征信息。深度學習模型能夠根據(jù)輸入的原始信號自動學習,并識別出焊管中的缺陷類型,從而對其進行準確的定性分析和評價。
筆者以304不銹鋼焊管為研究對象,提出了一種基于渦流檢測技術(shù)結(jié)合機器學習對不銹鋼焊管進行缺陷分類識別的方法,該方法首先將采集到的一維渦流信號進行信號處理,轉(zhuǎn)換成二維時頻圖;然后結(jié)合深度學習,將得到的二維時頻圖輸入到卷積神經(jīng)網(wǎng)絡(luò)(CNN),并提取圖像特征,從而實現(xiàn)不銹鋼焊管缺陷的分類識別。
1. 試驗裝置與試樣制備
檢測試驗裝置主要包括探頭、信號發(fā)生器、采集卡和計算機等(見圖1)。試驗材料為304不銹鋼鋼管。通過電火花在鋼管試樣上制造人工缺陷,試驗共設(shè)置5種不同的缺陷類型(見圖2)。采用渦流點探頭可以確保探頭在焊管中進行精確定位與測量,探頭參數(shù)如表1所示,激勵參數(shù)如表2所示。探頭沿缺陷試樣軸向掃描,存儲離散數(shù)據(jù),實現(xiàn)渦流信號采集。
2. 檢測數(shù)據(jù)采集
試驗采用AC6111采集卡,采樣頻率為400 kHz,分辨率為12位。利用MATLAB軟件對采集的渦流信號進行分析,得到時域信號波形(見圖3),橫坐標為采樣點,縱坐標為渦流信號振動幅值。
3. 特征變換及提取
3.1 特征變換
時頻分析是一種研究信號在時域和頻域上特性的方法,其結(jié)合了時間和頻率的信息,可以全面地分析信號行為。時頻分析通常用于處理非平穩(wěn)信號,即信號統(tǒng)計特性隨時間的變化情況。時頻分析方法主要有短時傅里葉變換(STFT)、連續(xù)小波變換(CWT)、希爾伯特-黃變換(HHT)、離散小波變換(DWT)、S變換等。CWT方法是在不同尺度上應(yīng)用小波函數(shù),對信號的頻率成分進行分析,常用于捕捉信號的局部結(jié)構(gòu)和瞬時特性,該方法的小波基選擇復(fù)雜,不同小波基的分析結(jié)果差別較大。HHT方法的時頻局部性好,適用于瞬態(tài)信號和局部頻率變化的情況,但局限于近似處理窄帶信號,且只能處理單一頻率信號。DWT方法提供了多層次分辨率,允許用戶在不同精度級別上查看信號細節(jié),但對連續(xù)信號采樣會引入誤差。S變換方法對相同信號選擇不同的尺度和窗口參數(shù),進而產(chǎn)生不同的時頻,導(dǎo)致獲得的時頻分辨率不夠理想。
筆者采用的時頻分析方法基于短時傅里葉變換,選擇合適的窗函數(shù)以分割待處理的原始信號。隨著窗函數(shù)的不斷移動,對截獲的時域信號每一小段進行傅里葉變換,使每一時刻的時域信號對應(yīng)于頻域信號。
離散短時傅里葉變換對于離散序列信號x(T)和時間T的變換如式(1)所示。整體離散短時傅里葉變換如式(2)所示。
式中:ω(T)為窗函數(shù);x(k)為待分析信號,其中k為時域信號,表示離散時間點;n為窗口數(shù)變量,對應(yīng)于STFT的時間參數(shù),n=0,1,2,3,…,E-1;t為頻率參數(shù),t=0,1,2,3,…,F-1;E為變換后頻域信號的水平坐標;F為變換后頻域信號的垂直坐標。
在頻域分析中,理想的窗函數(shù)應(yīng)具備兩個關(guān)鍵特性:一是主瓣窄,即具有高頻率分辨率,以準確區(qū)分不同的頻率成分;二是副瓣低,以減少不同頻率間的相互干擾。在常用的窗函數(shù)中,矩形窗函數(shù)的主瓣寬度相對集中,光譜分辨率較高,但其副瓣高度也相對較高,易導(dǎo)致頻譜間產(chǎn)生交叉干擾。漢寧窗函數(shù)也稱上升余弦窗函數(shù),其副瓣高度低,但主瓣寬度變寬,頻率分辨率不高。漢明窗函數(shù)與漢寧窗函數(shù)相似,其旁瓣較小,但衰減速率較慢;高斯窗函數(shù)的主瓣寬度寬,頻率分辨率也較低。綜合考慮頻率分辨率和副瓣抑制的需求,選擇漢寧窗函數(shù)。
為更好地處理數(shù)據(jù)采集部分獲取的時域信號,對常用時頻分析方法進行深入比較,采用短時傅里葉時頻分析方法,選用漢寧窗函數(shù)進行頻域分析,以實現(xiàn)更精確的信號處理。
3.2 特征提取
特征提取是從原始數(shù)據(jù)中選擇或轉(zhuǎn)換一組相關(guān)的信息,以描述數(shù)據(jù)的重要特征,從而對缺陷圖像進行分類和識別。特征提取可以減少數(shù)據(jù)的維度并捕捉數(shù)據(jù)的關(guān)鍵信息,從而提高模型的性能。一般來說,缺陷特征提取主要是提取缺陷區(qū)域的物理特征,包括形狀、灰度分布、紋理和圖像序列等信息。利用MATLAB軟件對采集到的渦流信號進行STFT,得到二維時頻圖(見圖4)。
缺陷的類型不同,其對應(yīng)的時頻圖也不同。圖4中顏色的深淺對應(yīng)了頻率的不同幅值,其中藍色是二維時頻圖的背景色。對每個缺陷譜圖的顏色深度進行識別,可以清楚地區(qū)分缺陷類型。由圖4可知:缺陷1色譜圖中兩種顏色區(qū)域有明顯的斷層峰值,表示該處為缺陷位,且峰值之間的距離表示缺陷的大?。蝗毕?色譜圖的正常區(qū)域為綠色區(qū)域,黃色峰區(qū)為缺陷;缺陷3的色譜圖中黃色峰值區(qū)間為缺陷,且缺陷的大小與缺陷2接近;缺陷4色譜圖中天藍色表示這個區(qū)域的材料是合格、沒有缺陷的,而中間的黃色峰區(qū)表示該處存在缺陷;缺陷5色譜圖中峰值處與天藍色區(qū)域有明顯的斷層,表示缺陷不連貫;標準試樣色譜圖中黃色區(qū)域貫穿了整個時間軸,即沒有缺陷。通過二維時頻圖可以對焊管缺陷的類型進行區(qū)分。
4. 分類識別結(jié)果
在處理圖像等二維數(shù)據(jù)時,其輸入數(shù)據(jù)通常都是高維的。當采用傳統(tǒng)神經(jīng)網(wǎng)絡(luò)訓練時,因模型的訓練參數(shù)過多,通常需要耗費更多的計算資源和更長的時間,特別是對于大規(guī)模數(shù)據(jù)集,模型對訓練數(shù)據(jù)過于敏感,從而影響其在新數(shù)據(jù)上的泛化性能。CNN是一種經(jīng)典的深度學習模型,其由一個或多個卷積層和其他分類神經(jīng)網(wǎng)絡(luò)組成。CNN作為一種圖像識別工具,可以利用卷積層來捕捉輸入數(shù)據(jù)的局部特征,通過權(quán)值共享,相同的權(quán)重被用于處理輸入的不同部分,從而減少參數(shù)的數(shù)量,提高模型的效率。在采用卷積神經(jīng)網(wǎng)絡(luò)作為分類器對工業(yè)不銹鋼焊管缺陷進行分類和識別時,選擇合適的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)至關(guān)重要,筆者對VGG-16和GoogLeNet兩種訓練模型進行了對比研究。
將圖4的二維時頻圖作為訓練特征輸入CNN輸入層中,制作特征樣本集,如表3所示,并將各種缺陷的時頻圖按3∶1∶1的比例隨機分為訓練集、驗證集和測試集。
4.1 學習率的優(yōu)化
學習率是深度學習優(yōu)化算法中的一個重要參數(shù),其控制了模型權(quán)重在每次迭代中更新的幅度,學習率過高會引起參數(shù)的頻繁更新,使模型在訓練時出現(xiàn)劇烈的波動,直至不收斂;學習率過低會使算法收斂得很慢。通過調(diào)節(jié)學習率,使算法達到較快的收斂速率與較高的穩(wěn)定性。選擇學習率分別為0.01,0.001和0.000 1,其他參數(shù)保持不變,不同學習率下的準確度如表4所示。由表4可知:VGG-16模型和GoogLeNet模型均在學習率為0.01時的準確度最高,分別達到了79.1%和68.3%。
4.2 VGG-16和GoogLeNet兩種模型對比
為了對VGG-16模型和GoogLeNet模型的準確性進行評估,對測試集中的40張含有各類缺陷的圖像進行了試驗。這些圖像涵蓋了多種缺陷類型,旨在全面檢驗?zāi)P偷淖R別能力。試驗結(jié)果顯示,在面對特定缺陷時,VGG-16模型的準確性較高,因為其深層架構(gòu)能夠捕捉并提取特定缺陷的復(fù)雜特征。GoogLeNet模型在處理其他類型的缺陷時顯示出更好的性能,能夠有效地捕捉和識別多樣化的缺陷。
不同模型對缺陷的識別精度和整體分類精度如表5所示。由表5可知:VGG-16模型對5種不同類型缺陷的識別精度更高,整體分類精度達到了0.800;GoogLeNet模型的整體分類精度僅為0.685。表明VGG-16模型在工業(yè)不銹鋼焊管缺陷分類識別中的準確性和穩(wěn)定性明顯優(yōu)于GoogLeNet模型。
5. 結(jié)論
在對缺陷的分類識別中,優(yōu)化神經(jīng)網(wǎng)絡(luò)參數(shù),選擇表現(xiàn)效果最好的0.01學習率;通過對比VGG-16與GoogLeNet兩種神經(jīng)網(wǎng)絡(luò)模型的訓練效果,在整體缺陷分類精度的表現(xiàn)上,VGG-16模型的精度優(yōu)于GoogLeNet模型,達到了0.800。將短時傅里葉變換和卷積神經(jīng)網(wǎng)絡(luò)相結(jié)合,并對工業(yè)不銹鋼焊管的缺陷進行分類識別。通過多種信號處理方法的對比,采用短時傅里葉方法對渦流信號進行分析,將經(jīng)過處理后的信號轉(zhuǎn)換成時頻圖,并作為卷積神經(jīng)網(wǎng)絡(luò)的輸入,采用該方法可以有效避免特征提取不足、計算速率低、識別精度低等問題,實現(xiàn)了焊管缺陷的分類識別。
文章來源——材料與測試網(wǎng)